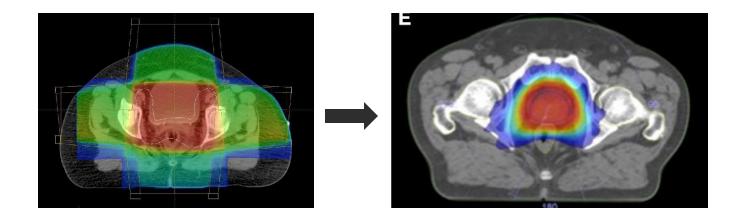


The Evolving Role of Precision Radiation Oncology Across the Prostate Cancer Continuum

Emily S. Weg, MD
Director of Genitourinary Radiation Oncology
Assistant Professor, Department of Radiation Oncology
Weill Cornell Medicine / New York Presbyterian

What is radiation therapy?

Therapeutic Ratio =
$$\frac{\text{Benefit}}{\text{Risk}}$$


What is radiation therapy for prostate cancer?

1980s: 3DCRT 1990s-2000s: IMRT, dose escalation

2000s: IGRT 2010s: Proton Therapy, SBRT

What is radiation therapy for prostate cancer?

How is radiation used clinically?

- Definitive therapy for cancer
- Adjuvant therapy for cancer
- Palliative therapy for cancer
- Benign conditions

What do radiation oncologists do?

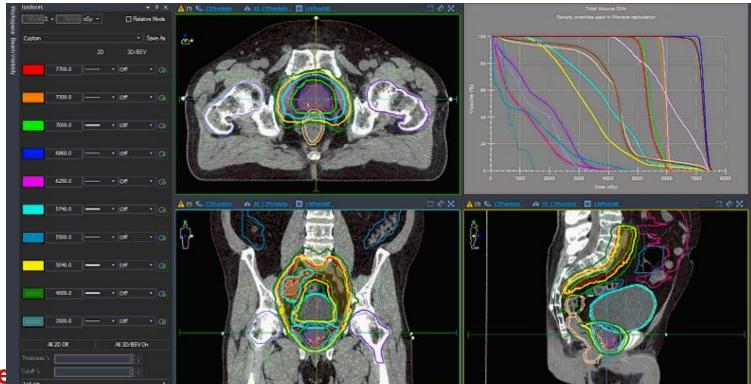
Consult Simulation Contour Treatment plan Treatment Follow Up

Radiation for prostate cancer:

Radiation planning starts with contouring the target and avoidance structures

GTV = gross tumor volume

CTV = clinical target volume


PTV = planning target volume

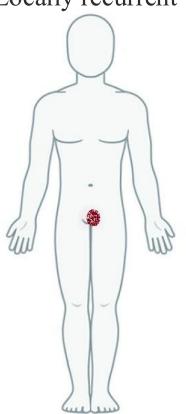
ITV = internal target volume

OAR = organs at risk

Radiation for prostate cancer: Radiation planning

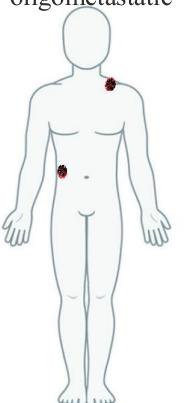
Radiation for prostate cancer: Radiation planning

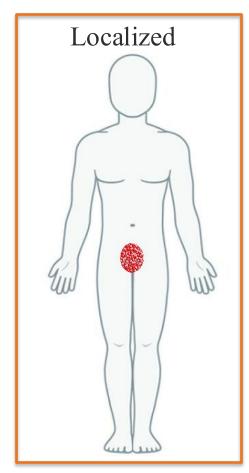
Radiation treatment on a linac

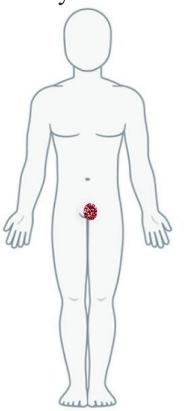


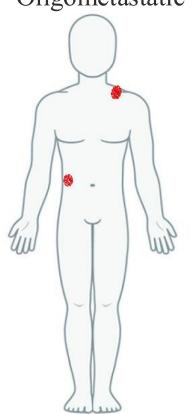
Role of radiation expanding across prostate cancer disease states

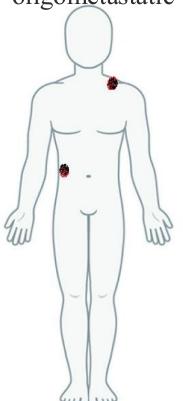
Localized

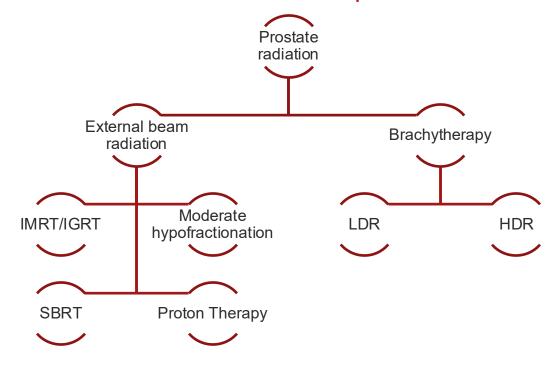

Locally recurrent


Oligometastatic


Hormone resistant oligometastatic


Role of radiation expanding across prostate cancer disease states


Locally recurrent


Oligometastatic

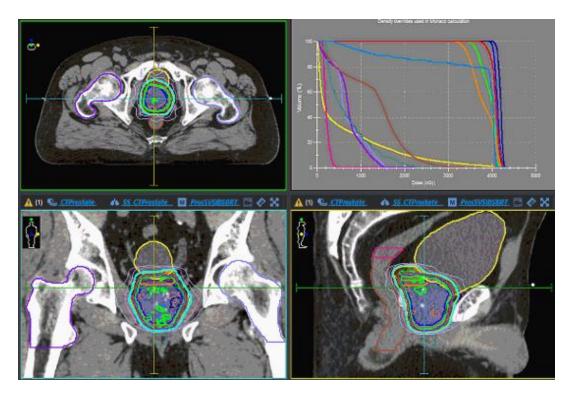
Hormone resistant oligometastatic

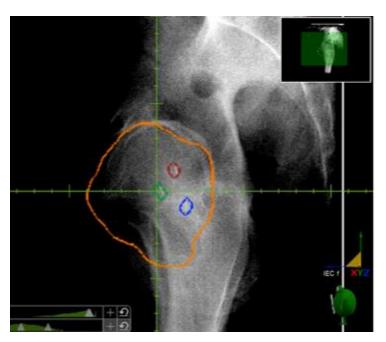
The landscape of radiation for LOCALIZED prostate cancer

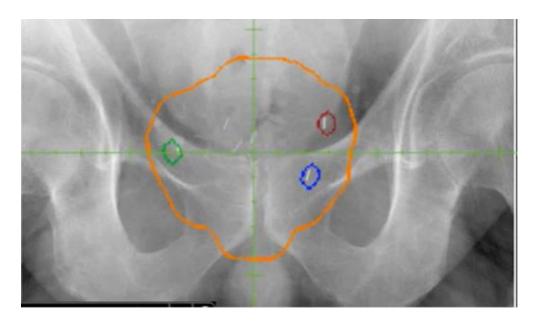
What is Stereotactic Body Radiation Therapy (SBRT)?

	Conventional fractionation	Moderate hypofractionation	SBRT
Dose	81Gy	70Gy	40Gy
Dose per fraction	1.8Gy	2.5Gy	8Gy
Fraction number	45	28	5

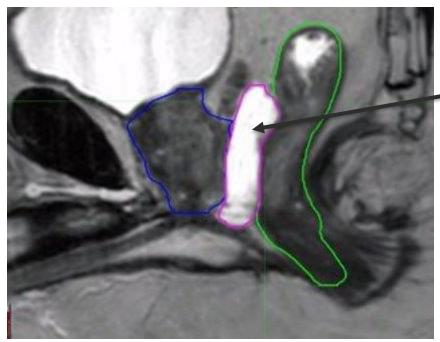
Why SBRT?


- Biology
- Socioeconomic
- Natural evolution


Stereotactic Body Radiation Therapy (SBRT): Precision matters

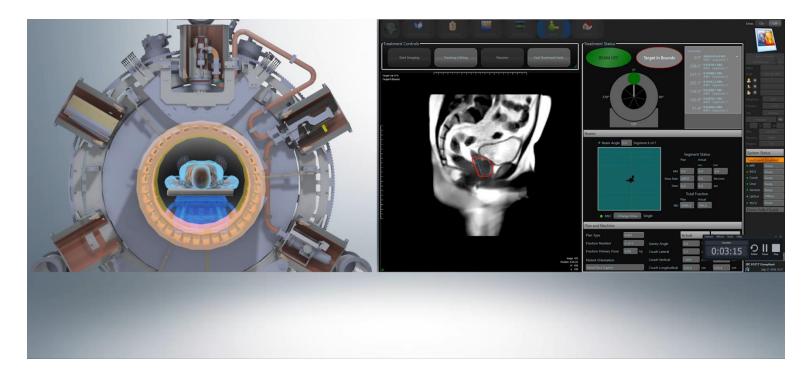

- High doses
- Small margins
- Extra image guided targeting
- Fiducial markers + rectal spacer
- Extra patient prep to minimize interfraction variations in internal anatomy

Fiducial Markers



DEPARTMENT OF RADIATION ONCOLOGY

Rectal Hydrogel Spacer



Hydrogel Spacer creates about 1cm of distance between the prostate and rectum

DEPARTMENT OF RADIATION ONCOLOGY

SBRT on the MR Linac

SBRT on the MR Linac

SBRT on the MR Linac

JAMA Oncology

RCT: Magnetic Resonance Imaging-Guided vs Computed Tomography-Guided Stereotactic Body Radiotherapy for Prostate Cancer

POPULATION 156 Men

Men with clinically localized prostate adenocarcinoma receiving stereotactic body radiotherapy (SBRT) **Median age, 71 v**

LOCATION

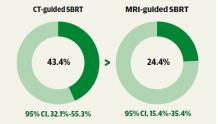
One large US medical center

INTERVENTION

154 Participants randomized and analyzed

76 CT-gulded SBRT

SBRT to the prostate using computed tomography (CT) guidance and a standard 4-mm planning margin


78 MRI-guided SBRT

SBRT to the prostate using magnetic resonance imaging (MRI) guidance with a 2-mm planning margin

FINDINGS

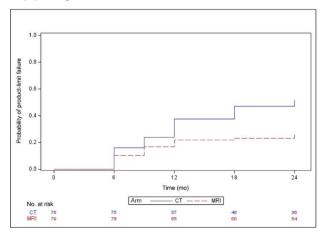
Incidence of acute grade ≥2 GU toxic effects was significantly lower with MRI-guided SBRT compared with CT-guided SBRT

Proportion with acute grade ≥2 GU toxic effects

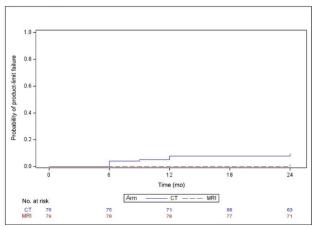
P value for comparison = .01

PRIMARY OUTCOME

Incidence of acute grade ≥ 2 genitourinary (GU) toxic effects from the start of SBRT to ≤ 90 d post-SBRT, as measured by the Common Terminology Criteria for Adverse Events, version 4.03 scale


Kishan AU, Ma TM, Lamb JM, et al. Magnetic resonance imaging-guided vs computed tomography-guided stereotactic body radiotherapy for prostate cancer: the MIRAGE randomized clinical trial. JAMA Oncol. Published online January 12, 2023. doi:10.1001/jamaoncol.2022.6558

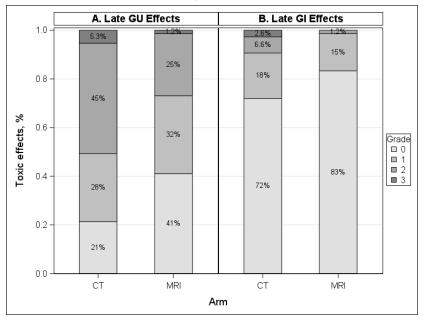
© AMA



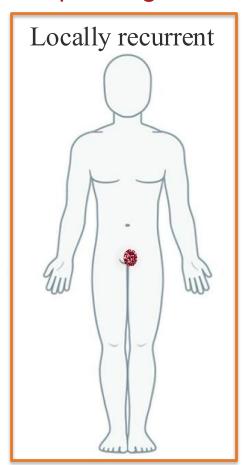
SBRT on the MR Linac: less 2-year toxicity

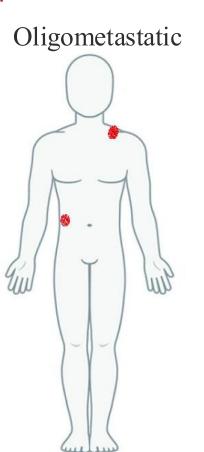
(A) Late grade ≥2 GU toxic effects

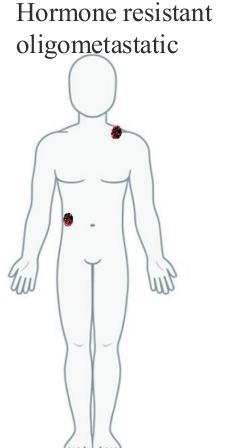
(B) Late grade ≥2 GI toxic effects


MR-guided SBRT associated with less 2-year G2+ GU (27% vs 51%, p=0.004) and GI tox (1.4% vs 9.5%, p=0.025)

Kishan et al, Eur Urol 2024.


SBRT on the MR Linac: only 1% G3 tox

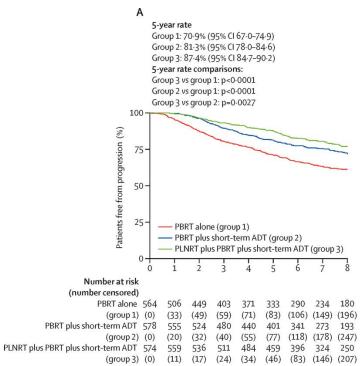



MR-guided SBRT associated with less late GU and GI toxicity

Role of radiation expanding across prostate cancer disease states

Localized

PSA recurrence following prostatectomy


Outcomes are improving!

- ultrasensitive PSA detection
- earlier interventions
- better diagnostics with PSMA PET

Outcomes after modern techniques for post-operative salvage radiation therapy: RTOG 0534 / SPPORT Trial (Pollack et al, The Lancet 2022)

- Phase III RCT with 3 arms: salvage RT to the prostate bed alone +/- ADT x4-6 months +/- elective pelvic nodal irradiation
- 1800 patients enrolled
- 5 year freedom from progression was
 71% vs 81% vs 87%

PSA recurrence following prostatectomy

Quality of life post treatment is improving!

More thoughtful use of ADT

Local recurrence following radiation

Can you reirradiate?

How should intra-prostatic failures after RT be managed?

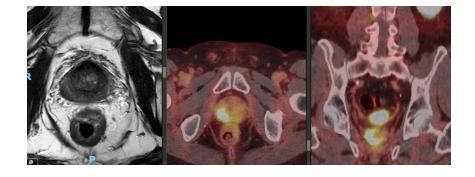
Table 3 - Covariate-adjusted meta-regression comparing efficacy and toxicity between salvage modalities and radical prostatectomy

	2-yr RFS	5-yr RFS	Severe GU toxicity	Severe GI toxicity
Radical prostatectomy				
Adjusted percent* (95% CI)	72% (66-78%)	53% (46%-59%)	21% (16%-26%)	1.5% (0.4%-3.2%)
Odds ratio (95% CI)	1.0	1.0	NA	NA
p value	Reference	Reference	Reference	Reference
R ² (%)	0.0	0,0	0.0	0.0
Cryotherapy				
Adjusted percent* (95% CI)	66% (59-72%)	57% (49-65%)	15% (8-23%)	0.9% (0.3-1.8%)
Odds ratio (95% CI)	0.74 (0.49-1.12)	1.20 (0.80-1.79)	NA	NA
p value	0.2	0.4	0.2	0.5
R ² (%)	25	0.0	8.2	27
HIFU				
Adjusted percent* (95% CI)	52% (45%-59%)	46% (37%-55%)	23% (17%-30%)	0.8% (0.1%-2.1%)
Odds ratio (95% CI)	0.42 (0.28-0.64)	0.76 (0.48-1.21)	NA	NA
p value	< 0.001	0.2	0.5	0.4
R ² (%)	0.0	41	15	22
SBRT				
Adjusted percent* (95% CI)	58% (46-69%)	56% (37-73%)	5.6% (1.4-12%)	0.0% (0.0-1.2%)
Odds ratio (95% CI)	0.52 (0.30-0.93)	1.13 (0.50-2.58)	NA NA	NA NA
p value	0.03	0.8	< 0.001	0.07
R ² (%)	55	4.2	0.00	0.0
HDR				
Adjusted percent* (95% CI)	77% (69-83%)	58% (52-64%)	9.6% (6.0-13.9%)	0.0% (0.0-0.3%)
Odds ratio (95% CI)	1.26 (0.77-2.09)	1.25 (0.88-1.78)	NA	NA
p value	0.4	0.2	0.002	0.003
R ² (%)	0.0	91	0.0	0.0
LDR				
Adjusted percent* (95% CI)	79% (72-85%)	53% (43-63%)	9.1% (5.2-14%)	2.1% (0.6-4.0%)
Odds ratio (95% CI)	1.49 (0.89-2.50)	1.02 (0.63-1.67)		-
p value	0.13	0.9	0.001	0.6
R ² (%)	4.3	5.2	12	20%

"MASTER" Meta-analysis of local salvage therapies after RT (Valle et al, Eur Urol 2021)

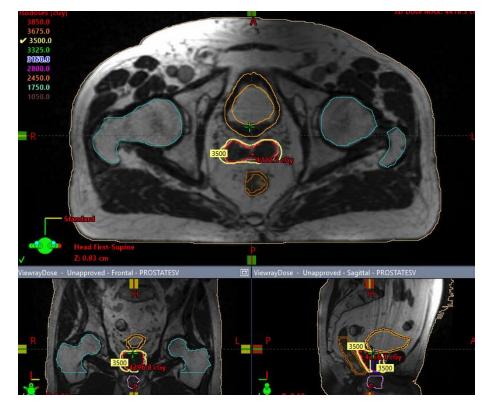
N=261 with SBRT

NCCN 2025 guidelines are the first to include SBRT as an option for reirradiation in this setting


CI = confidence interval; GI = gastrointestinal; GU = genitourinary; HDR = high-dose-rate brachytherapy; HIFU = high-intensity focused ultrasound; LDR = low-dose-rate brachytherapy; NA = not available; RFS = recurrence-free survival; SBRT = stereotactic body radiotherapy.

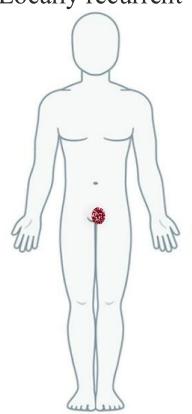
Significant p-values after Bonferroni correction appear in bold.

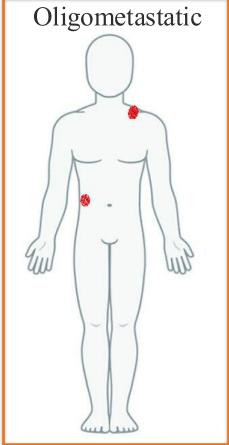
Back-transformed regression coefficients for ease of interpretation.


Case for local recurrence after RT

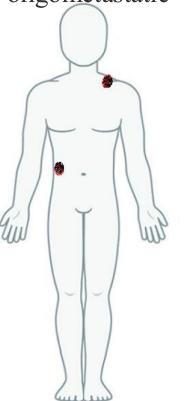
- 75M with PC diagnosed 2013
- Radiation to 81Gy / 45 fx completed 2/2014
- slowly rising PSA to 7.3, PSA DT >2 years
- MR and PSMA PET c/w local recurrence Biopsy demonstrates Gleason 3+4
- Plan: salvage re-RT with SBRT on MR linac

Salvage re-RT with MRgSBRT

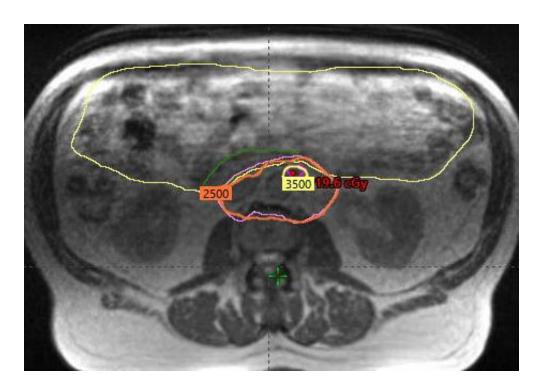

PSA went from 7.3 to 1.3 at his first 3-month follow up

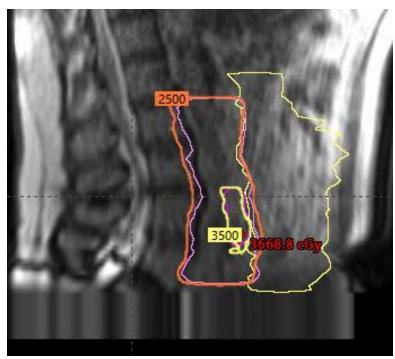


Role of radiation expanding across prostate cancer disease states


Localized

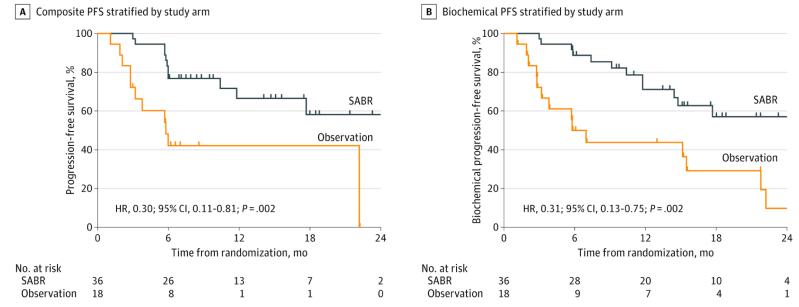
Locally recurrent





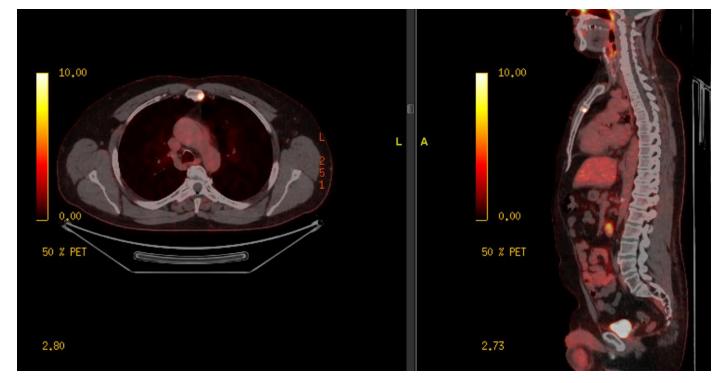
Hormone resistant oligometastatic

Metastasis-directed stereotactic body radiation therapy for **oligorecurrent disease**



Metastasis-directed stereotactic body radiation therapy for **oligorecurrent disease**

Oligometastasis-directed SBRT improves outcomes: ORIOLE study

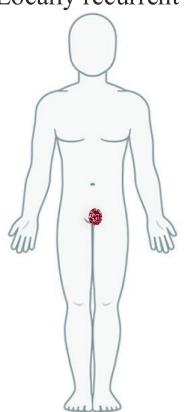


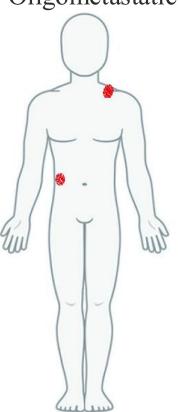
6-month PFS was 80% with SBRT vs 40% on observation.

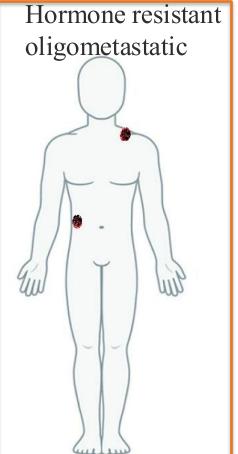
Median PFS was 6 months on observation vs not reached with SBRT.

Case 2: Metastasis-directed SBRT

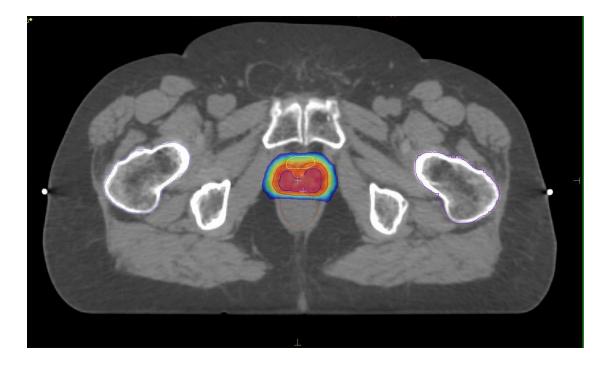
Case 2: Metastasis-directed SBRT to the sternum

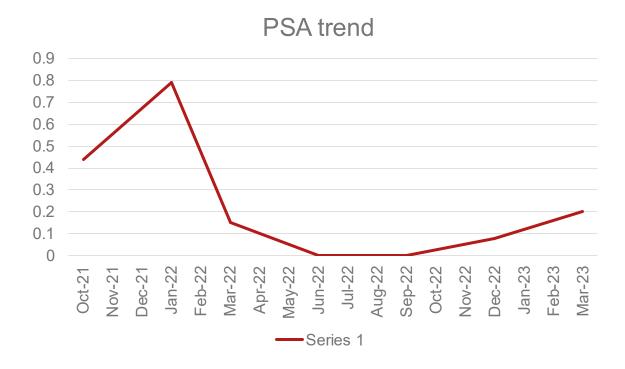



Role of radiation expanding across prostate cancer disease states

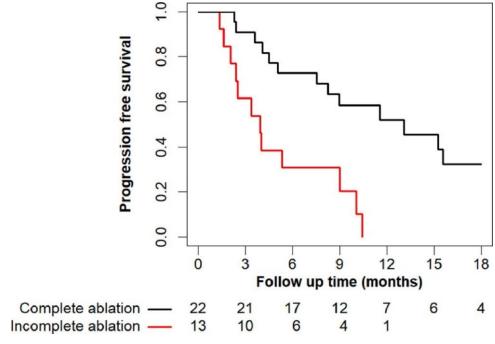

Localized

Locally recurrent


Oligometastatic


Stereotactic body radiation therapy for hormone resistant disease

- Man in his 70s, diagnosed with de novo MPC in 2010
- Treated with long-term ADT
- Developed early CRPC, with single site of progression in the prostate
- Referred for SBRT



Stereotactic body radiation therapy for hormone resistant disease

SBRT for **oligoprogressive** hormone resistant disease improves progression free survival

Brennan et al, Advanced in Rad Onc 2021.

In Sum:

Localized disease

- Many different radiation tools to help individualize treatment
- MRgSBRT is a promising new technology

Locally recurrent

- Post-operative salvage therapy is improving with earlier interventions
- Post-radiation salvage therapy with MRgSBRT can yield promising outcomes

Oligorecurrent hormone sensitive

Metastasis directed therapy can yield meaningful PFS benefit with minimal side effects

Oligoprogressive hormone resistant

 Metastasis directed therapy can yield meaningful PSA response with minimal side effects

Questions?

